Signal Processing For Image Processing

- Images
 - o Collection of photons
 - o Human eye has little surface area
 - Telescopes collect photons from a larger area
 - o Film cameras collect photons over time
 - Digital camera images need to be integrated to collect more photons
- Signals
 - A dimensioned sequence
 - X or independent axis
 - Time
 - Space
 - o Y or dependent axis
 - Color amplitude red, green, blue
 - Intensity some combination of inputs
 - o Data sets
 - Create new ones
 - Equations
 - Files or clipboard
 - Draw new ones with graph editor
 - Use saved signals
 - Files
 - Clipboard saves of other panels
 - Clipboard saves of image cross-sections
- Operations
 - o Inputs, transfer functions, outputs basis of all signals and systems analysis

 $Y(t) = X(t) \odot H(t)$

Where X(t) is an input, H(t) is a transfer function, O is an operation, Y(t) is the output

- o Unary operations
 - Delete
 - Derivative
 - Integrate
 - Flip axis
 - Floor/Ceiling
 - Fourier transform uses Cooley-Tukey Fast Fourier Transform algorithm
 - Pads to length of ^2

- Shows both real and imaginary parts (imaginary is green)
- Completely reversible by multiple transformations

$$\circ F(\omega) = \int f(t) * e^{-i\omega t} dt$$

o
$$f(t) \Leftrightarrow F(\omega)$$

o
$$F(-\omega) \Leftrightarrow f(t)$$

o
$$f(t) \Leftrightarrow F(\omega)$$
 requires 3 FFT transformations to cancel -1

- Invert
- Resample
- Shift
- Trim
- Zero
- Binary operations
 - Add
 - Append
 - Convolution

$$0 \quad y(t) = \int x(\tau) * h(t - \tau) d\tau$$

Correlation

$$\circ \quad \mathsf{y(t)} \ = \ \int x(\tau) * \ h(t+\tau) \ d\tau$$

- Multiply
- Functions that convolve in the time domain multiply in the frequency domain and vice-versa
- Potentially useful utilities
 - Adjustable filter -- build a controller of a real-life problem describable by differential equations
 - o Calculate the transfer function knowing the input and output

Image Processing

- Images
- Shaping the views
 - o Centering for primary highlight (feature) discovery
 - o Center and edge avoidance for secondary highlight discovery
- High-level operations
 - o Averaging
 - o Integration
 - o Correlation
 - FFT

- $y(t) = \int_0^\infty h(\tau) \cdot x(t-\tau) d\tau$ convolution, can use FFT
- $y(t) = \int_0^\infty h(\tau) \cdot x(t+\tau) d\tau$ correlation, can use FFT with x(t) flipped
- Recursive to lowest pixel level
 - Smaller FFT operations
 - Faster FFT operations
- Signals from images
 - Edge and corner detection
 - Laplacian and difference operators
 - Two dimensional operations
 - Kernels allow area operations
 - Derive Laplacian
 - Extend Laplacian to difference operator
 - o Arbitrary cross-sections
 - o Horizontal and vertical highlights
 - Rotational highlight
- RGB operations
 - Offset
 - o Gain
 - o Joined or unjoined RGB controls
 - Best used with arbitrary hand-drawn cross-section
- Two-dimensional operations
 - Image transforms
 - Average
 - Decimate
 - Derivative
 - Dilate
 - Erode
 - Laplacian -- $\nabla^2 \Phi = \nabla (\nabla \cdot \Phi)$
 - Positive
 - Negative
 - Expanded and unexpanded to display scale
 - Limit
 - Difference
 - Maximum
 - Mean
 - Minimum
 - Variance
- Image movement
 - o X or Y translation
 - o Rotation
 - Magnification

- Resampling
- Drag to area of interest
- Operates on image pixels, not rendered pixels
- User-selectable algorithms
 - Black image subtraction
 - o User-modifiable processing algorithms
 - Algorithm editor
 - Can be run immediately
 - Can be run during image combination processing
- Alignment algorithm selection
 - o Shift before rotate
 - o Rotate before shift
 - o Linear regression work in-progress
- Filter
 - o Hand-drawn
 - o Copy from Signal Analyzer program
 - Sharpening, edge focusing CT operation
- Debug displays
- The process
 - o Decimate to ~512 pixels
 - o Mean
 - Do not expand derivative or difference operator to scale
 - o Difference or Laplacian
 - Calculate undesired noise level show M33_Offsets 1,2,3 at default and limit=75
 - o Limit noise
 - o Dilate
 - o Erode
 - o Find features or highlights— X, Y, rotations
 - o Match features via correlations
 - o Move image to match
 - o Integrate or average
 - o Repeat for each additional image